

Engineering Studies of Fluorescent Penetrant Inspection: Introduction

Aging Aircraft Conference April 17, 2007

http://www.cnde.iastate.edu/faa-casr/fpi/index.html

Program Timeline

1999 – 2002 – Cleaning and Drying Studies performed as part of the Engine Titanium Consortium

2002 – 2006 – Engineering Assessment of Fluorescent Penetrant Inspection performed as part of Center for Aviation Systems Reliability effort

http://www.cnde.iastate.edu/faa-casr/fpi/index.html

CASR Engineering Assessment of FPI

- Provide engineering data to support decisions regarding the safe application and relevant use of FPI
- Includes data to support changes in specifications
- Generate tools for use by airlines and OEMS that improve FPI processes
- Strong industry team with extensive experience

Program Partners

Industrial Advisory Panel

Cooperative university/industry program which brings together aircraft and engine OEMs, airlines, vendors, as well as technical expertise from the NDE community.

ISU: Lisa Brasche, Rick Lopez, Dave Eisenmann, Bill Meeker FAA: Al Broz, Paul Swindell, Dave Galella **Boeing - Long Beach** Dwight Wilson, John Petty **Boeing - Seattle** Steve Younker, Mike Davis **Delta Airlines - Atlanta** Lee Clements **United Airlines - Indianapolis** Dave Arms, Bob Stevens Pratt & Whitney - EH and WPB Kevin Smith, John Lively Rolls Royce - Indianapolis and Darby Pramod Khandelwal, Keith Griffiths, Bill Griffiths, Tom Dreher **GE** Aircraft Engines Terry Kessler, Thadd Patton, Wayne Kitchen, Phil Keown Sherwin - Cincinnati Sam Robinson **D&W Enterprises - Denver** Ward Rummel

Technical Approach

- Define factors for which engineering data is deficient
 - Change in process, e.g., environmental changes
 - Change in applications
 - Data not available in the public domain
- Design engineering study that provides quantitative assessment of performance
 - Brightness measurements
 - Digital recording of UVA indication
 - Probability of Detection
- Complete study using either lab or shop facilities as appropriate
- Distribute results through use of web
- Support changes to industry specifications as warranted
- Utilize results to update/create guidance materials
- Transition process to airlines for internal, self-assessment

http://www.cnde.iastate.edu/faa-casr/fpi/index.html

Sample Fabrication

- Titanium 6AI-4V
 - ASTM-B-265, Grade 5 and AMS 4911
- Inconel 718

CASR

- AMS 5596
- EDM notches used as starter notches
- Three point bending to generate cracks with 2:1 to 3:1 crack aspect ratio
- Crack sizes ranging from 20 to 180 mils, most at 80 mils
- Sample dimensions: 6"
 x 1" x ¹/₂"

CASR Sample Characterization

- Final surface polish to 32 Ra
- Optical photographs (100X digital)
- Brightness measurements and UVA image capture to establish baseline and remove samples that showed variability

http://www.cnde.iastate.edu/faa-casr/fpi/index.html

CASR Brightness Measurement

- Used rigid fixturing to assure repeatability with transportability for brightness measurements
- Photo Research
 PR-880 Photometer
 used to record
 indication brightness in
 ft-Lamberts

Field Studies

- Requires access to typical drying, cleaning and FPI methods used in commercial aviation
 - Several partners have provided access to their facilities
 - Access to cleaning lines for Ti and Ni as well as mechanical blasting facilities
 - FPI line for sample processing
 - Inspection booth for characterization and brightness measurements

Field Studies

15 - 20 samples per basket 20 minute penetrant dwell 90 second pre-wash 120 seconds emulsifier contact with vertical motion Two 30 second cycles of air agitated water rinse, then a 90 second post-wash

Field Studies

Samples dried for 10 minutes at 160°F (or until dry) Dip/drag application of developer for baseline runs 10 minute minimum development time Brightness reading using **Spotmeter** Length reading using UVA and image analysis software

Engineering Studies

- Topics for engineering studies selected and prioritized by team
- Subteams developed for experimental design with review by the full team
- Experimental efforts to take place at various industry locations

- ES 1 Developer Studies
- ES 2 Cleaning Studies for Ti, Ni and Al
- ES 3 Stress Studies
- ES 4 Assessment tool for dryness and cleanliness
- ES 5 Effect of surface treatments on detectability
- ES 6 Light level Studies
- ES 7 Detectability Studies
- ES 8 Study of Prewash and Emulsification Parameters
- ES 9 Evaluation of Drying Temperatures
- ES 10 Part geometry effects
- ES 11 Penetrant Application Studies
- ES 12 Relationship of part thickness to drying method

Do penetrants self-develop?

- How does dry powder developer compare to non aqueous wet developer?
- How do different penetrant/developer families compare?
- How do developer application methods compare (dust chambers, bulb, spray wand, electrostatic)?
- How do different developer forms compare?

Need for Developer

- Brightness of three penetrants was evaluated without developer for cracks ranging from 13 to 130 mils
- While some larger cracks (> 80 mils) had acceptable brightness (>5), this was not true for all large cracks or for small cracks (< 80 mils)</p>
- No difference found in ability of penetrants to "self develop" for small cracks (< 80 mils)
- Effective inspection sensitivity requires developer

CASEry Powder vs. NAWD Comparison

- Level 4 Penetrant 20 minute dwell, 30 sec spray wash, 120 sec emulsification with agitation, 60 sec spray wash
- Dry powder developer (form a) with dip/drag application
 Two penetrant products
 - DP1 used as baseline

DP2

 NAWD (form d) alcohol based

2 applications

NAWD (form d) acetone based

3 applications

For NAWD, followed Manufacturers recommendation for 10" distance

- Data shown for AI, Ti and Ni samples with some differences in surface condition associated with alloy
- DP2 yielded brighter indications than DP1
- Isopropyl-based NAWD yielded brightest indications which is a result of "blooming" of the indication
- Acetone-based NAWD yielded lowest brightness but also "crisper" images than propanol-based NAWD

CASR	Nickel Samples					
	DP1	DP2	NAWD - Propanol	NAWD - acetone		
02-035						
Area	→ 0.001746	0.00497503	0.00549359	0.00154019		
02-057		1	and the second			
	0.00051902	0.0011116	0.00285967	0.00073288		
02-059						
	0.00046172	0.00090909	0.00194606	0.00045183		

CASR Comparative Study of Penetrant/Developer Combinations

- Testplan and crack size distribution was determined using samples from three alloys
- Number of samples:
 - Ni 17
 - Ti 15
 - AI 8

Run #PenetrantDeveloperApplication methodNotes1P-1D-1dip/drag2P-1D-1bulb3P-1D-1bulb3P-1D-1dip/drag4P-1D-1bulb5P-1D-1bulb6P-1D-1dip/drag7P-2D-2dip/drag8P-3D-3bulb9P-3D-3dip/drag10P-2D-2bulb11P-1D-1bulb12P-1D-1dip/drag13P-2D-1dip/drag14P-3D-1dip/drag	
Run #PenetrantDevelopermethodNotes1P-1D-1dip/drag2P-1D-1bulb3P-1D-1bulb4P-1D-1dip/drag5P-1D-1bulb6P-1D-1dip/drag7P-2D-2dip/drag8P-3D-3bulb9P-3D-3dip/drag10P-2D-2bulb11P-1D-1bulb12P-1D-1dip/drag13P-2D-1dip/drag14P-3D-1dip/drag	
1P-1D-1dip/drag2P-1D-1bulb3P-1D-1bulb4P-1D-1dip/drag5P-1D-1bulb6P-1D-1dip/drag7P-2D-2dip/drag9P-3D-3dip/drag10P-2D-2bulb11P-1D-1bulb12P-1D-1dip/drag13P-2D-1dip/drag14P-3D-1dip/drag	
2P-1D-1bulb3P-1D-1bulb4P-1D-1dip/drag5P-1D-1bulb6P-1D-1dip/drag7P-2D-2dip/drag8P-3D-3bulb9P-3D-3dip/drag10P-2D-2bulb11P-1D-1bulb12P-1D-1dip/drag13P-2D-1dip/drag14P-3D-1dip/drag	
3P-1D-1bulb4P-1D-1dip/drag5P-1D-1bulb6P-1D-1dip/drag7P-2D-2dip/drag8P-3D-3bulb9P-3D-3dip/drag10P-2D-2bulb11P-1D-1bulb12P-1D-1dip/drag13P-2D-1dip/drag14P-3D-1dip/drag	
4P-1D-1dip/drag5P-1D-1bulb6P-1D-1dip/drag7P-2D-2dip/drag8P-3D-3bulb9P-3D-3dip/drag10P-2D-2bulb11P-1D-1bulb12P-1D-1dip/drag13P-2D-1dip/drag14P-3D-1dip/drag	
5P-1D-1bulb6P-1D-1dip/drag7P-2D-2dip/drag8P-3D-3bulb9P-3D-3dip/drag10P-2D-2bulb11P-1D-1bulb12P-1D-1dip/drag13P-2D-1dip/drag14P-3D-1dip/drag	
6P-1D-1dip/drag7P-2D-2dip/drag8P-3D-3bulb9P-3D-3dip/drag10P-2D-2bulb11P-1D-1bulb12P-1D-1dip/drag13P-2D-1dip/drag14P-3D-1dip/drag	
7P-2D-2dip/dragpenetrant with it's own developer8P-3D-3bulb9P-3D-3dip/drag10P-2D-2bulb11P-1D-1bulb12P-1D-1dip/drag13P-2D-1dip/drag14P-3D-1dip/drag	
8 P-3 D-3 bulb 9 P-3 D-3 dip/drag 10 P-2 D-2 bulb 11 P-1 D-1 bulb 12 P-1 D-1 dip/drag 13 P-2 D-1 dip/drag 14 P-3 D-1 dip/drag	
9 P-3 D-3 dip/drag 10 P-2 D-2 bulb 11 P-1 D-1 bulb 12 P-1 D-1 dip/drag 13 P-2 D-1 dip/drag 14 P-3 D-1 dip/drag	
10 P-2 D-2 bulb 11 P-1 D-1 bulb 12 P-1 D-1 dip/drag 13 P-2 D-1 dip/drag 14 P-3 D-1 dip/drag	
11P-1D-1bulb12P-1D-1dip/drag13P-2D-1dip/drag14P-3D-1dip/drag	
12P-1D-1dip/drag13P-2D-1dip/dragpenetrant with baseline developer14P-3D-1dip/drag	
13P-2D-1dip/dragpenetrant with baseline developer14P-3D-1dip/drag	
14 P-3 D-1 dip/drag	
15 P-3 D-1 bulb	
16 P-2 D-1 bulb	
17 P-1 D-1 bulb	
18 P-1 D-1 dip/drag	
19 P-1 D-2 bulb baseline penetrant with other deve	opers
20 P-1 D-3 dip/drag	
21 P-1 D-2 dip/drag	
22 P-1 D-3 bulb	
23 P-1 D-1 dip/drag	
24 P-1 D-1 bulb	
25 P-2 D-3 dip/drag other penetrants with other develo	oers
26 P-3 D-2 bulb	
27 P-2 D-3 bulb	
28 P-3 D-2 dip/drag	
29 P-1 D-1 bulb	
30 P-1 D-1 dip/drag	
31 P-1 D-1 bulb	
32 P-1 D-1 dip/drag	

CASR	02 – 03	36 – Nickel –	PxDx P2D2 - Dip drag
Run 1 B = 18.5	Run 2 B = 16.8	Run 3 B = 19.6	Run 7 B = 17.0
Run 23 B = 20.4	P1D1 Dip/drag	Run 30 B = 19.3	Run 9 $B = 24 1$
Run 4 B = 23.1	Run 5 B = 22.33	Run 6 B = 24.2 Run 11 B = 24.	P3D3 - Bulb Run 8 B = 13.3
Run 17 B = 24.3	Run 24 B = 30.6	Run 29 B = 30.9	P2D2 - Bulb Bulb Run 10 B = 8.6

CASR Comparative Study of Penetrant/Developer Combinations

Penetrant Comparative Study Pall Dall

arranged in order of decreasing average brightness with P1Dx shown in white, P2Dx shown in blue, and P3Dx shown in green

Comparative Study of Penetrant/Developer Combinations Differences in penetrant/developer families are observed but all cracks gave acceptable performance In general, dip/drag gave better brightness values than bulb Linear regression analysis showed better performance for P3D3 followed by P1D1 and P2D2 Runs limited to one per combination

CASR Developer Application Methods

- Chamber a Developer applied through linear diffuser located at top and bottom of chamber
- Chamber b Developer applied from circular diffuser located at top and bottom of chamber
- Chamber c Developer applied from circular diffuser located at top of chamber
- Chamber d Developer applied from two nozzle diffusers located at bottom of chamber
- Manual spray Low pressure, high volume manual application
- Dip/drag Hand application of individual samples. Used for baseline measurements.

CASR Chamber D Characterization

- Jets located below rollers
- Typical operation of 5 sec developer application followed by 10 min dwell in chamber

CASR Chamber A Characterization

- Developer applied through linear diffusers located at top and bottom of chamber
- Developer time of 20 or 60 sec followed by 2 min dwell, 1 min evacuation and removal at 5 min
- Samples placed with cracks in up or down position

Samples prior to removal

Linear diffusers

Chamber A Characterization

CASR

Chamber D Characterization

CASR Statistical Analysis of Chamber Effects

- Statistical analysis showed:
 - Differences were found in location within the chambers
 - Right/left effects in Chamber B but not Chamber A for cracks in up position
 - Improved brightness in middle of Chamber B compared to either end for cracks in up position
 - More variation at front of Chamber D than middle and back of chamber
 - No right/left, front/back or level effects for cracks in down position
 - No level (top, middle bottom) effect found in Chamber A, B or D
 - Most significant effect was crack orientation (up, down, sideways)
- Suggest consider approaches which enhance contact of the developer with potential crack locations
 - Localized developer in areas of concern
- Characterization of chamber performance needed for routine use in line maintenance

CASR Importance of Sample Orientation

- Completed POD study which correlates brightness to detectability
- Used two sample sets, two inspectors under multiple UV intensity level, white light level combinations
- Evaluated indication location (top or bottom) of panel
- Significant differences can occur

CASR Importance of Brightness

- POD is correlated to brightness
- UVA intensity of 5000 µwatts/cm² lead to ~15 mil improvement in POD when compared to 1000 and 3000 µwatts/cm²
- Increasing whitelight contamination led to significant reductions in POD in excess of 100 mils

CASR R3.I2.5kuva.0fc Hit-Miss POD with 95% lower confidence bound 1.0 Φ 0.8 ï 0.6 POD 0.4 1 0.2 0 Ь 00 0 0.0 0.002 0.005 0.020 0.050 0.200 Length (Inches)

R4.I2.DevCh.5kuva.0fc Hit-Miss POD with 95% lower confidence bound

ACD

Manual Spray Application

- Low pressure, high volume spray
- 5 and 25 sec runs completed using lobster cage with cracks in D, S or U position
- 60 and 120 sec runs completed with samples all in U position

Manual Spray Application

 Increasing time of manual spray application from 5 to 25 sec showed significant improvements in brightness

CASR Preliminary Conclusions – Form A

- Developer application is critical to overall FPI performance
- Developer application by dip/drag yields brighter indication than with any of the developer chamber or wand application methods
- No indications were "lost" but detectability improves with brightness – optimal process will yield bright indications
- Sample orientation matters
 - Avoid barriers that prevent direct application of the developer
 - Ensure chamber configuration or part handling fixtures (rollers, baskets, etc.) don't hamper application
 - No metal-to-metal contact
 - May require multiple trips through the chamber to ensure adequate coverage on all surfaces
- White light contamination matters

Form B and C

Current industry standards allow the use of several developer forms, including:

- Dry powder (Form a)
- Water soluble (Form b)
- Water suspendible (Form c)
- Non-aqueous wet developer (Form d)
- Past studies have shown that application of dry powder using a dust storm cabinet produces an indication brightness that varies between cabinets, and with defect location
- Spray or dip application of water suspendible or water soluble developer has the potential of avoiding this defect location sensitivity

What Work Was Done

This work monitored the change in FPI indication brightness while varying: Developer Type

- Dry powder
- Water soluble
- Water suspendible
- NAWD

Developer Concentration (for soluble/suspendible)

- Recommended
- Low

Developer Application Method

- Immersion
- Spray (performed at Tinker)
- Dip/drag
- Bulb

Crack Orientation (for Bulb application)

- Facing up
- Facing sideways

39 samples (Ti, Ni) selected with crack sizes shown in the distribution above

Included 16 samples from prior emulsification studies completed at ISU

How Was It Performed

Inspection Process

- 20 minute penetrant dwell
- 90 second pre-wash
- 120 second emulsification (15-second agitation interval)
- 90 second post-wash
- \rightarrow developer apply (soluble or suspendible)
 - 10 minute dry @ 155°F
 - → 10 minute development (dry powder)
 - photometer brightness and UVA microscope imaging
 - NAWD Application and 10 minute development
 - photometer brightness and UVA microscope imaging
 - 30 minute UT-agitated acetone clean
 - 60 minute dry @ 155°F

When divided by developer form, experimental runs included:

Dry powder developer

Dip/drag application

Crack facing upward – Bulb application

Crack facing sideways – Bulb application

Water suspendible developer

Recommended concentration – immersion application Low concentration – immersion application

Low concentration – spray application (Tinker)

Water soluble developer

Recommended concentration – immersion application

Low concentration – immersion application

Low concentration – spray application (Tinker)

NAWD

Applied as a follow-up to any developer combination above

- Baseline runs completed at ISU using dip/drag processing
- Shipped emulsifier, penetrant and dry powder developer to Tinker for use in baseline processing
- One baseline run at Tinker to verify good compatibility between ISU baseline and OKC results
- Three runs each with Form B and Form C processes
 - Two runs with baseline penetrant/emulsifier and form b/c developer
 - One run through inspection line using penetrant/emulsifier/developer
- More detailed runs completed at ISU

Reasonable agreement between baseline runs at ISU and OKC

Sample Processing

MANAMA MANAMAN

- Penetrant
 - Applied with applicator over crack location
 - Dwell time of 20 minutes
- Pre and Post-rinse
 - 90 sec each
- Emulsification
 - 120 sec total contact time
 - Mild agitation every 15 sec, 30 sec for transition to rinse station

CASR Sample Processing – Developer Application

- Form A Dip/drag processing using baseline materials
- Form B Water soluble applied with spray system
- Form C Water suspendible applied with spray system
- Form D NAWD, isopropanol-based spray can, single pass

Data Summary

- Brightness results plotted on log scale
- Form B and C results on average show lower
 brightness
 brightness
 than Form A or Form D
 Form C slightly better
 than Form B

CASR Post Baseline Characterization

- Repeat baseline runs at ISU using dip/drag followed by NAWD
- Repeat baseline runs at ISU using bulb application followed by NAWD
- Additional Form B and Form C runs

Surface Appearance After Developer Application at ISU

Dip / Drag

Surface Appearance After Developer Application at ISU

Bulb

Comparison of Surface

Form B

Form C

How Was It Performed

Water Soluble/Suspendible developers used at acceptable concentration, and at a lower concentration to determine the relative effect on indication brightness

QPL Listed and Mapufacturor's	Form B	2.0 lbs/gal 1.055 sp. grav.
Recommended	Form C	0.5 lbs/gal 1.035 sp. grav.
Lower than	Form B	0.25 lbs/gal 1.01 sp. grav.
Standard	Form C	0.25 lbs/gal 1.008 sp. grav.

Post Baseline Results

CASR Comparison of D/D to Bulb Application

Bulb application lower than dip/drag application Could be a reasonable addition to characterization of penetrant performance

Laboratory Results

 Form C brightness similar to Form A baseline with enhanced brightness at "smaller brightness" range

Laboratory Results

Using the recommended concentration led to significant improvements in brightness for both Form B and C

Laboratory Results

- Question ask about better performance using the lower concentration at smaller crack sizes
- Generating difference plot did not find advantage

CASR Developer Form Comparison

- Brightness comparison normalized to Form A dip/drag
- Only samples common to all runs were used which leads to a small sample set (10 samples)
- Additional statistical analysis underway – results considered preliminary
- Form D brightness results from more "spread-out" nature of the indication
- Additional analysis of UVA images is warranted to complement the brightness comparisons

Conclusions

- Use of Form B and Form C developers at the recommended concentration lead to a 140% increase in brightness.
- Masking of small cracks was not evident
- Form B and Form C indications were more diffuse in nature, particularly when compared to the linear indications generated by the Form A developer. It is important that inspectors be aware of these differences and the implications for detectability. Consideration should be given to the implications for training.
- Form C at recommended concentration resulting in brightness similar to Form A dip/drag

Engineering Studies

- Much more information on the CASR website
- ES 1 Developer Studies
- ES 2 Cleaning Studies for Ti, Ni and Al
- ES 3 Stress Studies
- ES 4 Assessment tool for dryness and cleanliness
- ES 5 Effect of surface treatments on detectability
- ES 6 Light level Studies
- ES 7 Detectability Studies
- ES 8 Study of Prewash and Emulsification Parameters
- ES 9 Evaluation of Drying Temperatures
- ES 10 Part geometry effects
- ES 11 Penetrant Application Studies
- ES 12 Relationship of part thickness to drying method

- Airline has implemented a dust chamber characterization procedure to understand positional effects of their systems
- Airline now uses bulb or spray wand application on critical geometry features to enhance developer adherence
- Wet glass bead use restricted for parts that well undergo FPI
- OEM has modified Penetrant Testing, Quality Assurance Subject, of their Nondestructive Testing Standard Practice Manual
- Facility has modified concentration of Form B and Form C developers
- Aspects of the work has been incorporated into AMS 2647 – Rev. C
- Drum rotor best practice has been used as part of AD's

More information

- Website to provide background info and publish technical results
- Link to FAA Reports available

http://www.cnde.iastate.edu/faa-casr/fpi/index.html